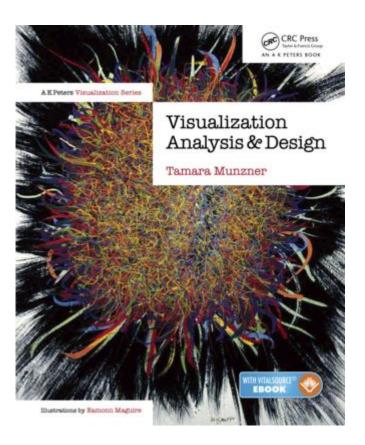
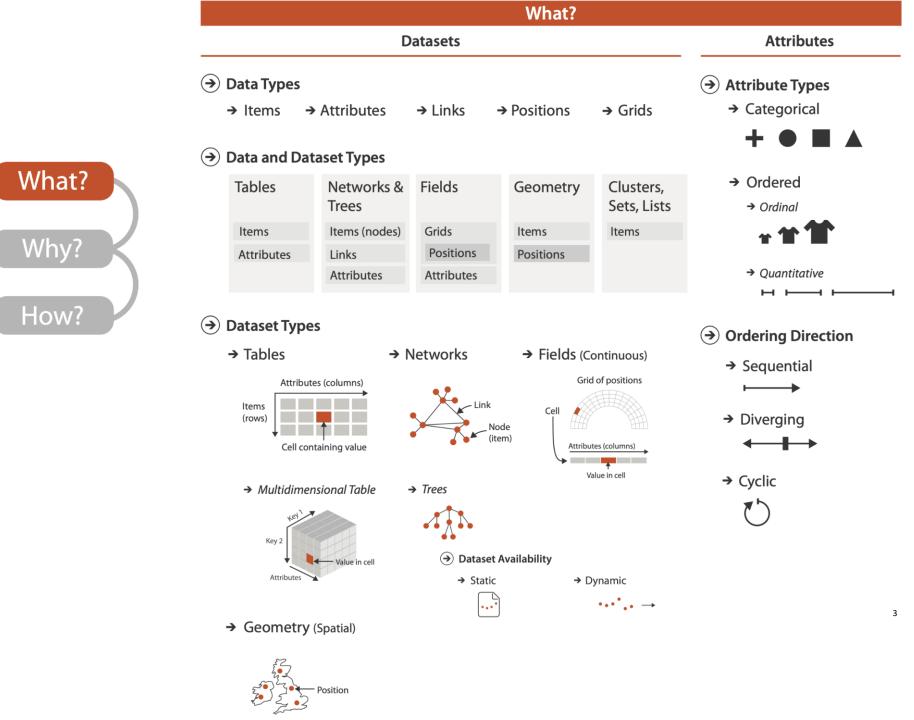
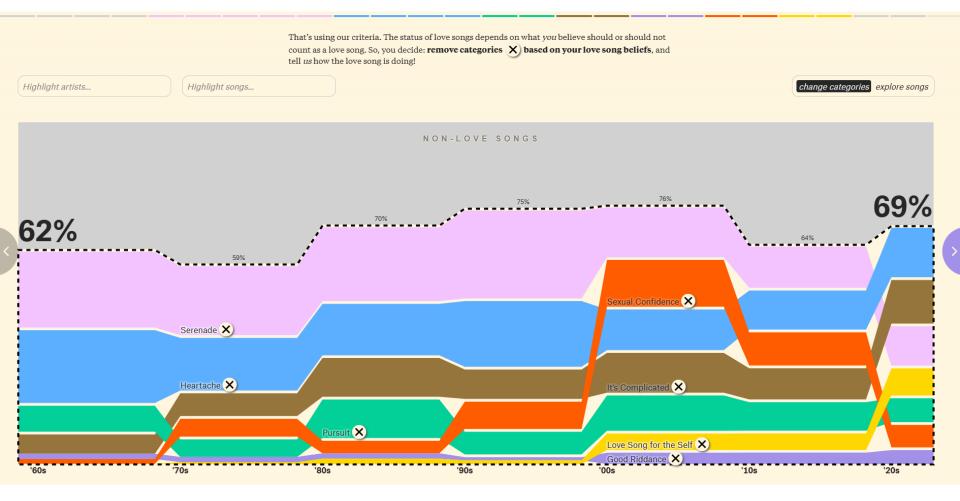
05. Task Abstraction

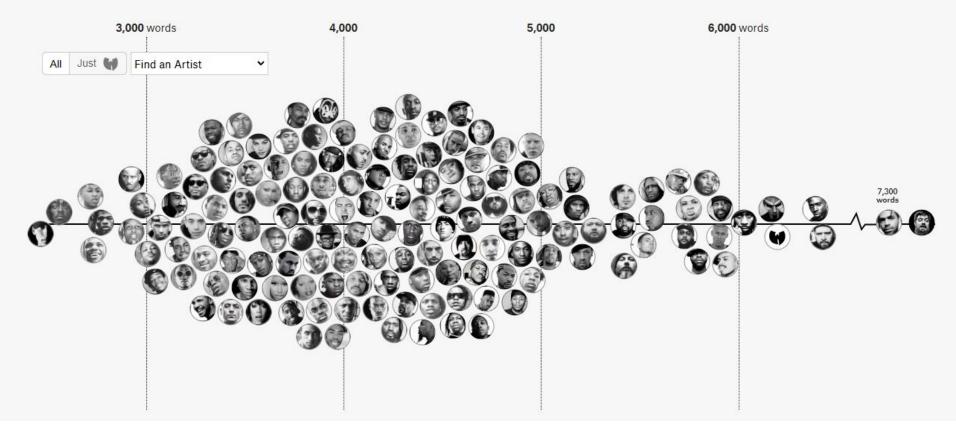

ID 413: Information Graphics and Data Visualization Spring 2025

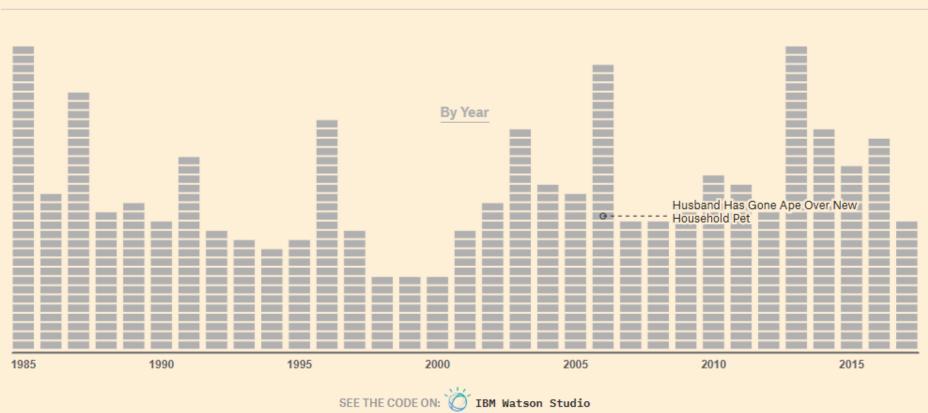

> Venkatesh Rajamanickam (@venkatrajam) venkatra@iitb.ac.in http://info-design-lab.github.io/


Visualization Analysis & Design

Tamara Munzner

A K Peters Visualization Series CRC Press, 2014





https://pudding.cool/2024/11/love-songs/

of Unique Words Used Within Artist's First 35,000 Lyrics

https://pudding.cool/projects/vocabulary/

LOW LIBIDO HUSBANDS LGBTQ NO SEX VIRGINITY ODD INTERNET SEX ABUSE AIDS INDECENCY TOO YOUNG

14 POSTS 13 11 10 8 8 6 6 6

https://pudding.cool/2018/11/dearabby/

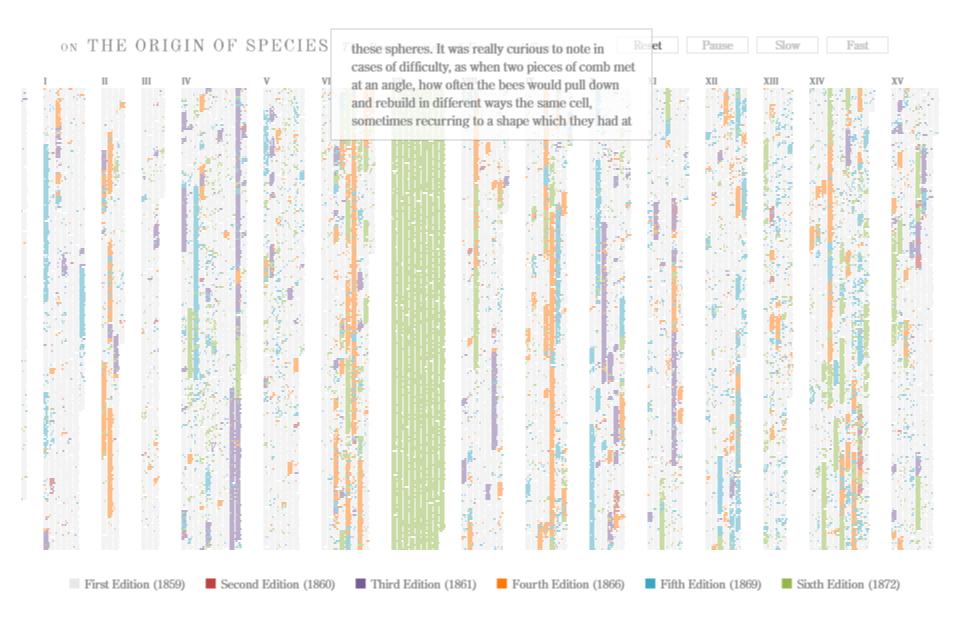
October 11: This GoFundMe group will pay your legal fees if you tattle on Trump

NBC News

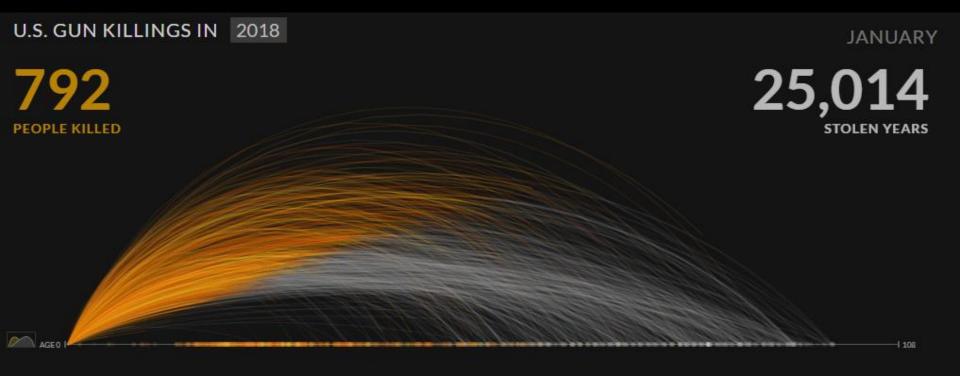
October 11: Trump Debate Comment Inspires #MuslimsReportStuff, And It's Very Funny

NPR

October 11: Donald Trump's Sad, Lonely Life


The New York Times

October 11: Trump declares himself free from 'shackles' and threatens to burn the GOP to the ground



The Raw Story

https://pudding.cool/2017/03/elections/

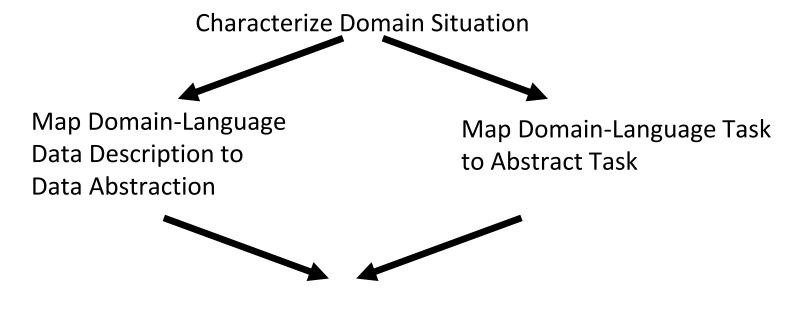
https://benfry.com/traces/

https://guns.periscopic.com/

From domain to abstraction

- domain characterization: details of application domain
 - -group of users, target domain, their questions & data
 - varies wildly by domain
 - must be specific enough to get traction
 - -domain questions/problems
 - break down into simpler abstract tasks
- abstraction: data & task
 - map what and why into generalized terms
 - identify tasks that users wish to perform, or already do
 - find data types that will support those tasks
 - possibly transform /derive if need be

• Transforming task descriptions from domain-specific language into abstract form allows you to reason about similarities and differences between them


- Transforming task descriptions from domain-specific language into abstract form allows you to reason about similarities and differences between them
- Allows useful comparisons between domain situations

- Transforming task descriptions from domain-specific language into abstract form allows you to reason about similarities and differences between them
- Allows useful comparisons between domain situations
- The apparent difference in different domains is misleading: there are a lot of similarities in the tasks people do once you strip away the surface language differences
 - e.g. an epidemiologist studying the spread of a new strain of influenza might describe her task as "contrast the prognosis of patients who were intubated in the ICU more than one month after exposure to patients hospitalized within the first week", while a marketing manager studying sales data might use language such as "see if the southern regional sales match up with the western regional sales over the holiday season"

- Transforming task descriptions from domain-specific language into abstract form allows you to reason about similarities and differences between them
- Allows useful comparisons between domain situations
- The apparent difference in different domains is misleading: there are a lot of similarities in the tasks people do once you strip away the surface language differences
 - e.g. an epidemiologist studying the spread of a new strain of influenza might describe her task as "contrast the prognosis of patients who were intubated in the ICU more than one month after exposure to patients hospitalized within the first week", while a marketing manager studying sales data might use language such as "see if the southern regional sales match up with the western regional sales over the holiday season"
- The analysis framework has a small set of carefully chosen words to describe why people are using vis, designed to help you crisply and concisely distinguish between different goals

- Transforming task descriptions from domain-specific language into abstract form allows you to reason about similarities and differences between them
- Allows useful comparisons between domain situations
- The apparent difference in different domains is misleading: there are a lot of similarities in the tasks people do once you strip away the surface language differences
 - e.g. an epidemiologist studying the spread of a new strain of influenza might describe her task as "contrast the prognosis of patients who were intubated in the ICU more than one month after exposure to patients hospitalized within the first week", while a marketing manager studying sales data might use language such as "see if the southern regional sales match up with the western regional sales over the holiday season"
- The analysis framework has a small set of carefully chosen words to describe why people are using vis, designed to help you crisply and concisely distinguish between different goals
- Another important reason to analyze the task is to understand whether and how to transform the user's original data into different forms by deriving new data

Design process

Identify/Create Suitable Idiom/Technique

Task abstraction: Actions and targets

• very high-level pattern

• {action, target} pairs

-discover distribution

–compare trends

-locate outliers

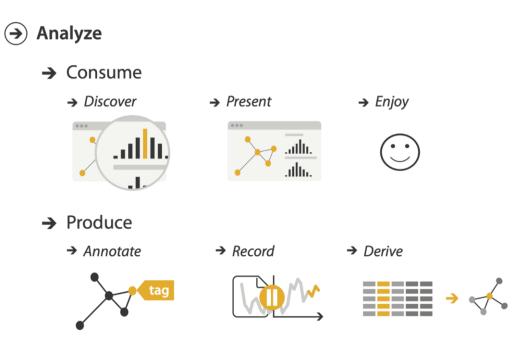
-browse topology

Task abstraction: Actions and targets

- very high-level pattern
- actions
 - analyze
 - high-level choices
 - search
 - find a known/unknown item
 - -query
 - find out about characteristics of item

- {action, target} pairs
 - -discover distribution
 - -compare trends
 - -locate outliers
 - -browse topology

Task abstraction: Actions and targets


- very high-level pattern
- actions
 - analyze
 - high-level choices
 - search
 - find a known/unknown item
 - -query
 - find out about characteristics of item
- targets
 - -what is being acted on

- {action, target} pairs

 -discover distribution
 -compare trends
 -locate outliers
 - -browse topology

Actions: Analyze

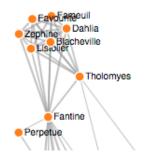
- consume
 - -discover vs present
 - classic split
 - aka explore vs explain
 - -enjoy
 - newcomer
 - aka casual, social
- produce
 - -annotate, record
 - -derive
 - crucial design choice

what does user know?
 target, location

→ Search

	Target known	Target unknown	
Location known	••• Lookup	• _ Browse	
Location unknown	CONTRACTOR Locate	COLO Explore	

- what does user know?
 –target, location
- lookup
 - -ex: word in dictionary
 - •alphabetical order

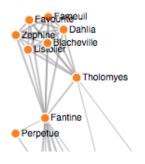

→ Search

	Target known	Target unknown	
Location known	• • • Lookup	• _ Browse	
Location unknown	COLOC Locate	COLO Explore	

- what does user know?
 –target, location
- lookup
 - -ex: word in dictionary
 - alphabetical order
- locate
 - -ex: keys in your house
 - -ex: node in network

→ Search	
----------	--

	Target known	Target unknown	
Location known	• • • Lookup	• _ Browse	
Location unknown	COLOCATE	COLO Explore	

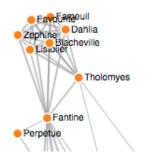


https://bl.ocks.org/heybignick/3faf257bbbbc7743bb72310d03b86ee8

- what does user know?
 –target, location
- lookup
 - –ex: word in dictionary
 - alphabetical order
- locate
 - -ex: keys in your house
 - -ex: node in network
- browse
 - -ex: books in bookstore

ۍ 🗲	Search
-----	--------

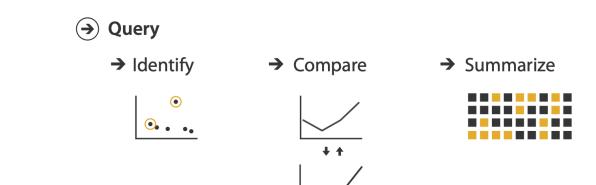
	Target known	Target unknown	
Location known	••• Lookup	• _ Browse	
Location unknown	COLOCATE	CONTROL Explore	



https://bl.ocks.org/heybignick/3faf287bbbbbc7743bb72310d03b86ee8

- what does user know?
 –target, location
- lookup
 - –ex: word in dictionary
 - alphabetical order
- locate
 - -ex: keys in your house
 - -ex: node in network
- browse
 - -ex: books in bookstore
- explore
 - ex: find cool
 neighborhood in new
 city

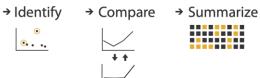
\mathbf{E}	Search
--------------	--------


	Target known	Target unknown	
Location known	• • • Lookup	• _ Browse	
Location unknown	COLOCATE	COLO Explore	

https://bl.ocks.org/heybignick/3faf257bbbbbc7743bb72310d03b86ee8

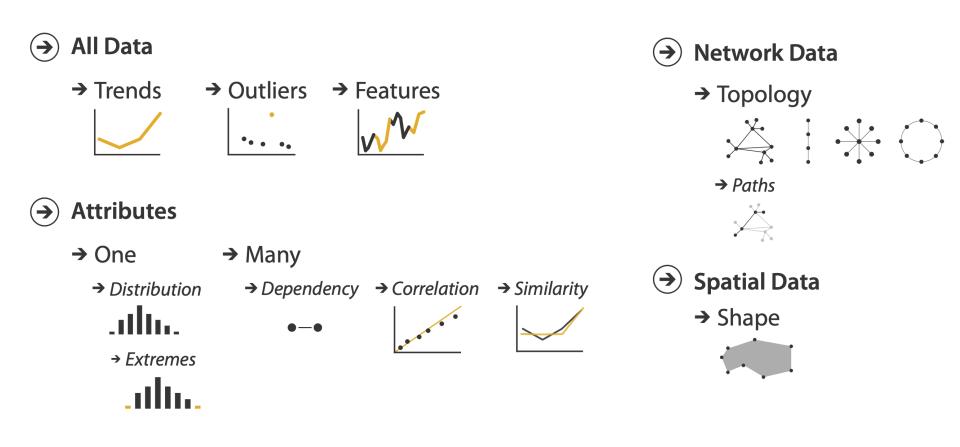
Actions: Query

- how much of the data matters?
 - -one: identify
 - -some: compare
 - -all: summarize


Actions

- independent choices for each of these three levels
 - -analyze, search, query
 - mix and match

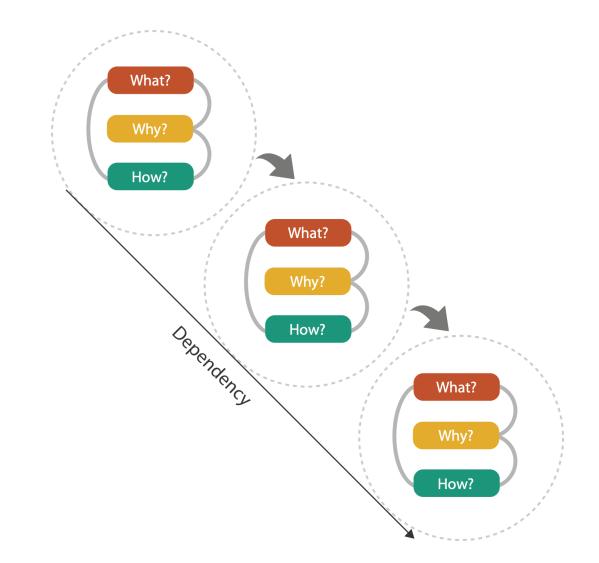
	🕫 Actions				
→ Analyze					
→ Consume					
→ Discover	→ Present	→ Enjoy			
	<u>adh.</u>	\bigcirc			
→ Produce					
→ Annotate	→ Record	→ Derive			
tag	M.	→ √,			
→ Search					



All Data \rightarrow → Trends \rightarrow Outliers \rightarrow Features

Attributes (\rightarrow)

→ One → Many → Distribution → Dependency → Correlation → Similarity .illin. \rightarrow Extremes dh.

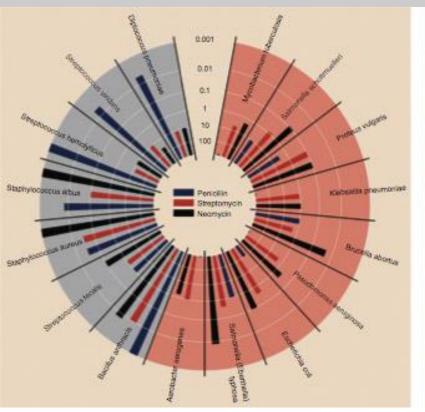


Abstraction

- these {action, target} pairs are good starting point for vocabulary
 – but sometimes you'll need more precision!
- rule of thumb
 - systematically remove all domain jargon
- interplay: task and data abstraction
 - need to use data abstraction within task abstraction
 - to specify your targets!
 - but task abstraction can lead you to transform the data
 - -iterate back and forth
 - first pass data, first pass task, second pass data, ...

Means and ends

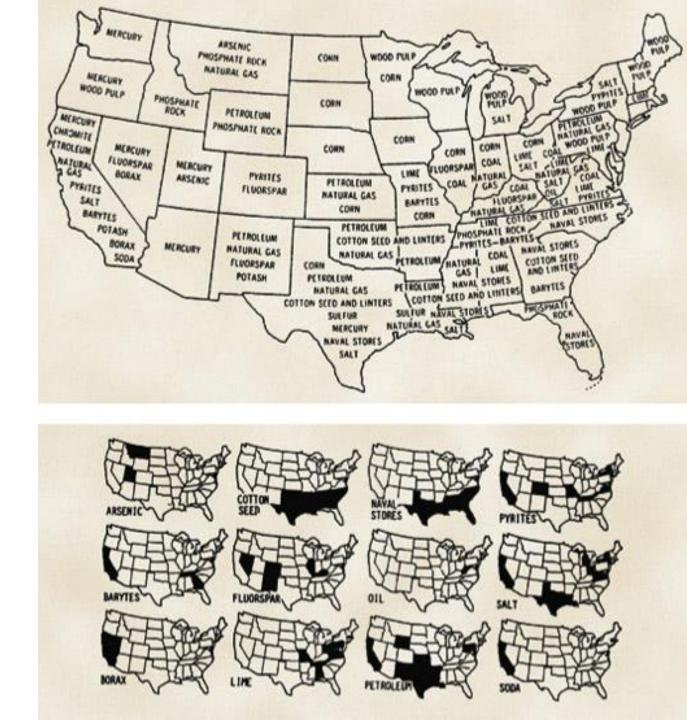
{action, target} pairs


–discover distribution

- *–compare trends*
- -locate outliers
- -browse topology

Why?					
	🗳 Action	S	Targets		
→ Analyze			→ All Data		
→ Consur → Discov ↓	er → Present	→ Enjoy	 → Trends → Outliers → Features ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		
→ Annoto		→ Derive	→ One → Many → Distribution → Dependency → Correlation → Similarity		
→ Search			→ Extremes		
	Target known	Target unknown			
Location known	···· Lookup	•. Browse	→ Network Data		
Location unknown	< 💽 Jocate	< 💽 Nore	→ Topology		
 → Query → Identify ○.○. 	✓ → Compare	→ Summarize	→ Paths → Paths → Spatial Data → Shape ↓ How? 36		

Assignment 4 - Visualise Burtin's Antibiotic Dataset


Bacteria	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
Aerobacter aerogenes	870	1	1.6	11 <u>-</u>
Brucella abortus	1	2	0.02	822
Bacillus anthracis	0.001	0.01	0.007	+
Diplococcus pneumoniae	0.005	11	10	+
Escherichia coli	100	0.4	0.1	-
Klebsiella pneumoniae	850	1.2	1	-
Mycobacterium tuberculosis	800	5	2	1.778
Proteus vulgaris	3	0.1	0.1	-
Pseudomonas aeruginosa	850	2	0.4	(14)
Salmonella (Eberthella) typhosa	1	0.4	0.008	5 <u></u>
Salmonella schottmuelleri	10	0.8	0.09	822
Staphylococcus albus	0.007	0.1	0.001	+
Staphylococcus aureus	0.03	0.03	0.001	+
Streptococcus fecalis	1	1	0.1	+
Streptococcus hemolyticus	0.001	14	10	+
Streptococcus viridans	0.005	10	40	+

- 3 antibiotics, penicillin, neomycin and streptomycin on 16 bacteria
- minimum concentration of the drug required to prevent the growth of the bacteria in vitro -- the minimum inhibitory concentration (MIC)
- their efficacy varied over six orders of magnitude
- scale varies from 1,000 micrograms per milliliter on the innermost ring to .001 micrograms per milliliter on the outermost
- the longer the bar, the greater the efficacy of the antibiotic.

Assignment 2 - Visualise Burtin's Antibiotic Dataset

- How do the drugs compare?
- How do the bacteria group together?

- What is produced in Nebraska?
- Where is corn produced?

